Virtual Optimization of Nasal Insulin Therapy Predicts Immunization Frequency to Be Crucial for Diabetes Protection

نویسندگان

  • Georgia Fousteri
  • Jason R. Chan
  • Yanan Zheng
  • Chan Whiting
  • Amy Dave
  • Damien Bresson
  • Michael Croft
  • Matthias von Herrath
چکیده

OBJECTIVE Development of antigen-specific strategies to treat or prevent type 1 diabetes has been slow and difficult because of the lack of experimental tools and defined biomarkers that account for the underlying therapeutic mechanisms. RESEARCH DESIGN AND METHODS The type 1 diabetes PhysioLab platform, a large-scale mathematical model of disease pathogenesis in the nonobese diabetic (NOD) mouse, was used to investigate the possible mechanisms underlying the efficacy of nasal insulin B:9-23 peptide therapy. The experimental aim was to evaluate the impact of dose, frequency of administration, and age at treatment on Treg induction and optimal therapeutic outcome. RESULTS In virtual NOD mice, treatment efficacy was predicted to depend primarily on the immunization frequency and stage of the disease and to a lesser extent on the dose. Whereas low-frequency immunization protected from diabetes atrributed to Treg and interleukin (IL)-10 induction in the pancreas 1-2 weeks after treatment, high-frequency immunization failed. These predictions were confirmed with wet-lab approaches, where only low-frequency immunization started at an early disease stage in the NOD mouse resulted in significant protection from diabetes by inducing IL-10 and Treg. CONCLUSIONS Here, the advantage of applying computer modeling in optimizing the therapeutic efficacy of nasal insulin immunotherapy was confirmed. In silico modeling was able to streamline the experimental design and to identify the particular time frame at which biomarkers associated with protection in live NODs were induced. These results support the development and application of humanized platforms for the design of clinical trials (i.e., for the ongoing nasal insulin prevention studies).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chitosan (CHT) and trimethylchitosan (TMC) nanoparticles as adjuvant/delivery system for parenteral and nasal immunization against Mycobacterium tuberculosis (MTb) ESAT-6 antigen

Objective(s): An efficient vaccine against TB is an urgent need. TB peptides are safe candidate but they are weak immunogens and needs to be potentiated by adjuvant/delivery systems. The main purpose of the present study was to determine the potential of CHT based NPs containing ESAT-6 antigen of M. tuberculosis for inducing mucosal and systemic immune responses after intranasal and subcutaneou...

متن کامل

Optimization and development of insulin nanoparticles by new thiolated chitosan derivative with ionic gelation method using a model-based methodology

Insulin therapy has been the best choice for the clinical management of diabetes mellitus. The current insulin therapy is via subcutaneous injection, which often fails to mimic the glucose homeostasis that occurs in normal individuals. Oral delivery is the most convenient administration route. However, insulin cannot be well absorbed orally because of its rapid enzymatic degradation in the gast...

متن کامل

اثر متفورمین در کنترل قند خون بیماران دیابتی نوع دوم تحت درمان با انسولین

Background: Patients with type 2 diabetes are often obese and require large dose of insulin to achieve glycemic control. Insulin therapy often cause weight gain and results in increasing insulin requirements. This study was conducted to evaluate the efficacy of metformin in combination with insulin in patients with type 2 diabetes poorly controlled with insulin therapy alone. Materials and Meth...

متن کامل

Nasal Immunization by (PLGA) Nanospheres Encapsulated with Tetanus Toxoid and (CpG-ODN)

In induction of systemic and mucosal immunity, particulate antigens are more effective than soluble antigens possibly because they are more efficiently endocytosed by mucosal-associated lymphoid tissue (MALT) M cells. In this study, we determined the systemic and mucosal immune responses in rabbits following intranasal immunization of tetanus toxoid TT and CpG-ODN encapsulated within PLGA nanos...

متن کامل

Nasal Immunization by (PLGA) Nanospheres Encapsulated with Tetanus Toxoid and (CpG-ODN)

In induction of systemic and mucosal immunity, particulate antigens are more effective than soluble antigens possibly because they are more efficiently endocytosed by mucosal-associated lymphoid tissue (MALT) M cells. In this study, we determined the systemic and mucosal immune responses in rabbits following intranasal immunization of tetanus toxoid TT and CpG-ODN encapsulated within PLGA nanos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2010